Dopamine modulation of Ca(2+) dependent Cl(-) current regulates ciliary beat frequency controlling locomotion in Tritonia diomedea.

نویسندگان

  • Owen M Woodward
  • A O Dennis Willows
چکیده

The physiological mechanisms controlling ciliary beating remain largely unknown. Evidence exists supporting both hormonal control of ciliary beating and control via direct innervation. In the present study we investigated nervous control of cilia based locomotion in the nudibranch mollusc, Tritonia diomedea. Ciliated pedal epithelial (CPE) cells acting as locomotory effectors may be electrically excitable. To explore this possibility we characterized the cells' electrical properties, and found that CPE cells have large voltage dependent whole cell currents with two components. First, there is a fast activating outward Cl(-) current that is both voltage and Ca(2+) influx dependent (I(Cl(Ca))). I(Cl(Ca)) is sensitive to DIDS and 9-AC, and resembles currents of Ca(2+)-activated Cl(-) channels (CaCC). Ca(2+) dependence also suggests the presence of voltage-gated Ca(2+) channels; however, we were unable to detect these currents. The second current, a voltage dependent proton current (I(H)), activates very slowly and is sensitive to both Zn(2+) and changes in pH. In addition we identify a new cilio-excitatory substance in Tritonia, viz., dopamine. Dopamine, in the 10 mumol l(-1)-1 mmol l(-1) range, significantly increases ciliary beat frequency (CBF). We also found dopamine and Tritonia Pedal Peptide (TPep-NLS) selectively suppress I(Cl(Ca)) in CPE cells, demonstrating a link between CBF excitation and I(Cl(Ca)). It appears that dopamine and TPep-NLS inhibit I(Cl(Ca)) not through changing [Ca(2+)](in), but directly by an unknown mechanism. Coupling of I(Cl(Ca)) and CBF is further supported by our finding that DIDS and zero [Cl(-)](out) both increase CBF, mimicking dopamine and TPep-NLS excitation. These results suggest that dopamine and TPep-NLS act to inhibit I(Cl(Ca)), initiating and prolonging Ca(2+) influx, and activating CBF excitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nervous control of ciliary beating by Cl(-), Ca(2+) and calmodulin in Tritonia diomedea.

In vertebrates, motile cilia line airways, oviducts and ventricles. Invertebrate cilia often control feeding, swimming and crawling, or gliding. Yet control and coordination of ciliary beating remains poorly understood. Evidence from the nudibranch mollusc, Tritonia diomedea, suggests that locomotory ciliated epithelial cells may be under direct electrical control. Here we report that depolariz...

متن کامل

Conservation of a Tritonia Pedal peptides network in gastropods

Adults of the nudibranch mollusc Tritonia diomedea crawl using mucociliary locomotion. Crawling is controlled in part by the large Pedal 5 (Pd5) and Pedal 6 (Pd6) neurons that produce Tritonia Pedal peptides (TPeps). TPeps elicit an increase in ciliary beat frequency, thereby increasing crawling speed. In adults of T. diomedea, an extensive network of TPep-containing neurites adjacent to the ba...

متن کامل

Identification of magnetically responsive neurons in the marine mollusc Tritonia diomedea.

Behavioral experiments have demonstrated that the marine mollusc Tritonia diomedea can use the Earth's magnetic field as an orientation cue. Little is known, however, about the neural mechanisms that underlie magnetic orientation behavior in this or any other animal. In previous studies, two neurons in the brain of Tritonia, known as LPd5 and RPd5, were shown to respond with enhanced electrical...

متن کامل

Effect of Cilia Beat Frequency on Muco-ciliary Clearance

Background: The airway surface liquid (ASL), which is a ï‌‚uid layer coating the interior epithelial surface of the bronchi and bronchiolesis, plays an important defensive role against foreign particles and chemicals entering lungs.Objective: Numerical investigation has been employed to solve two-layer model consisting of mucus layer as a viscoelastic fluid and periciliary liquid layer as a New...

متن کامل

Mechanisms of beat-to-beat regulation of cardiac pacemaker cell function by Ca²⁺ cycling dynamics.

Whether intracellular Ca(2+) cycling dynamics regulate cardiac pacemaker cell function on a beat-to-beat basis remains unknown. Here we show that under physiological conditions, application of low concentrations of caffeine (2-4 mM) to isolated single rabbit sinoatrial node cells acutely reduces their spontaneous action potential cycle length (CL) and increases Ca(2+) transient amplitude for se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 209 Pt 14  شماره 

صفحات  -

تاریخ انتشار 2006